Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 921

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Japan Atomic Energy Agency; Contribution to the decommissioning of the Fukushima Daiichi Nuclear Power Station and the reconstruction of Fukushima Prefecture at the Naraha center for Remote Control technology development

Morimoto, Kyoichi; Ono, Takahiro; Kakutani, Satomi; Yoshida, Moeka; Suzuki, Soichiro

Journal of Robotics and Mechatronics, 36(1), p.125 - 133, 2024/02

The Naraha Center for Remote Control Technology Development was established for the purpose of developing and verifying remote control equipment for promoting the decommissioning of the Fukushima Daiichi Nuclear Power Station and the external use of this center was started in 2016. The mission of this center is to contribute to the decommissioning of the Fukushima Daiichi Nuclear Power Station and for the reconstruction of Fukushima Prefecture. In this review, we describe the equipment related to the full-scale mock-up test, the component test for a remote-control device and the virtual reality system in this center. In addition, the case examples for usage of these equipment are introduced.

Journal Articles

Predictive and inverse modeling of a radionuclide diffusion experiment in crystalline rock at ONKALO (Finland)

Soler, J. M.*; Kek$"a$l$"a$inen, P.*; Pulkkanen, V.-M.*; Moreno, L.*; Iraola, A.*; Trinchero, P.*; Hokr, M.*; $v{R}$$'i$ha, J.*; Havlov$'a$, V.*; Trpko$v{s}$ov$'a$, D.*; et al.

Nuclear Technology, 209(11), p.1765 - 1784, 2023/11

 Times Cited Count:2 Percentile:72.91(Nuclear Science & Technology)

Journal Articles

Relationship between the contact angle of pure Cu and its alloys owing to liquid Na and electronic states at the interface

Saito, Junichi; Monbernier, M.*

Surfaces and Interfaces (Internet), 41, p.103248_1 - 103248_8, 2023/10

 Times Cited Count:0 Percentile:0.01(Chemistry, Physical)

Journal Articles

Impact of MOX fuel use in light-water reactors; Long-term radiological consequences of disposal of high-level waste in a geological repository

Minari, Eriko*; Kabasawa, Satsuki; Mihara, Morihiro; Makino, Hitoshi; Asano, Hidekazu*; Nakase, Masahiko*; Takeshita, Kenji*

Journal of Nuclear Science and Technology, 60(7), p.793 - 803, 2023/07

 Times Cited Count:2 Percentile:53.91(Nuclear Science & Technology)

JAEA Reports

Report of summer holiday practical training on 2022

Ishitsuka, Etsuo; Ho, H. Q.; Kitagawa, Kanta*; Fukuda, Takahito*; Ito, Ryo*; Nemoto, Masaya*; Kusunoki, Hayato*; Nomura, Takuro*; Nagase, Sota*; Hashimoto, Haruki*; et al.

JAEA-Technology 2023-013, 19 Pages, 2023/06

JAEA-Technology-2023-013.pdf:1.75MB

Eight people from five universities participated in the 2022 summer holiday practical training with the theme of "Technical development on HTTR". The participants practiced the feasibility study for nuclear battery, the burn-up analysis of HTTR core, the feasibility study for $$^{252}$$Cf production, the analysis of behavior on loss of forced cooling test, and the thermal-hydraulic analysis near reactor pressure vessel. In the questionnaire after this training, there were impressions such as that it was useful as a work experience, that some students found it useful for their own research, and that discussion with other university students was a good experience. These impressions suggest that this training was generally evaluated as good.

Journal Articles

Development plan for coupling technology between high temperature gas-cooled reactor HTTR and hydrogen production facility, 1; Overview of the HTTR heat application test plan to establish high safety coupling technology

Nomoto, Yasunobu; Mizuta, Naoki; Morita, Keisuke; Aoki, Takeshi; Okita, Shoichiro; Ishii, Katsunori; Kurahayashi, Kaoru; Yasuda, Takanori; Tanaka, Masato; Isaka, Kazuyoshi; et al.

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05

Journal Articles

Accuracy of measuring rebar strain in concrete using a diffractometer for residual stress analysis

Yasue, Ayumu*; Kawakami, Mayu*; Kobayashi, Kensuke*; Kim, J.; Miyazu, Yuji*; Nishio, Yuhei*; Mukai, Tomohisa*; Morooka, Satoshi; Kanematsu, Manabu*

Quantum Beam Science (Internet), 7(2), p.15_1 - 15_14, 2023/05

JAEA Reports

Irradiation test using foreign reactor, 1; Study of irradiation test with capsule temperature control system (Joint research)

Takabe, Yugo; Otsuka, Noriaki; Fuyushima, Takumi; Sayato, Natsuki; Inoue, Shuichi; Morita, Hisashi; Jaroszewicz, J.*; Migdal, M.*; Onuma, Yuichi; Tobita, Masahiro*; et al.

JAEA-Technology 2022-040, 45 Pages, 2023/03

JAEA-Technology-2022-040.pdf:6.61MB

Because of the decommission of the Japan Materials Testing Reactor (JMTR), the domestic neutron irradiation facility, which had played a central role in the development of innovative nuclear reactors and the development of technologies to further improve the safety, reliability, and efficiency of light water reactors, was lost. Therefore, it has become difficult to pass on the operation techniques of the irradiation test reactors and irradiation technologies, and to train human resources. In order to cope with these issues, we conducted a study on the implementation of irradiation tests using overseas reactors as neutron irradiation sites as an alternative method. Based on the "Arrangement between the National Centre for Nuclear Research and the Japan Atomic Energy Agency for Cooperation in Research and Development on Testing Reactor," the feasibility of conducting an irradiation test at the MARIA reactor (30 MW) owned by the National Centre for Nuclear Research (NCBJ) using the temperature control system, which is one of the JMTR irradiation technologies, was examined. As a result, it was found that the irradiation test was possible by modifying the ready-made capsule manufactured in accordance with the design and manufacturing standards of the JMTR. After the modification, a penetration test, an insulation continuity test, and an operation test in the range of room temperature to 300$$^{circ}$$C, which is the operating temperature of the capsule, were conducted and favorable results were obtained. We have completed the preparations prior to transport to the MARIA reactor.

Journal Articles

The Effect of a cyclic bending load on the bending resistance of ballooned, ruptured, and oxidized Zircaloy-4 cladding

Li, F.; Narukawa, Takafumi; Udagawa, Yutaka

Journal of Nuclear Science and Technology, 12 Pages, 2023/00

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Radioactive particles from a range of past nuclear events; Challenges posed by highly varied structure and composition

Johansen, M. P.*; Child, D. P.*; Collins, R.*; Cook, M.*; Davis, J.*; Hotchkis, M. A. C.*; Howard, D. L.*; Howell, N.*; Ikeda, Atsushi; Young, E.*

Science of the Total Environment, 842, p.156755_1 - 156755_11, 2022/10

 Times Cited Count:5 Percentile:53.82(Environmental Sciences)

Journal Articles

Effect of fault activation on the hydraulic connectivity of faults in mudstone

Ono, Hirokazu; Ishii, Eiichi

Geomechanics for Energy and the Environment, 31, p.100317_1 - 100317_9, 2022/09

 Times Cited Count:5 Percentile:61.08(Energy & Fuels)

Journal Articles

Study on the effect of long-term high temperature irradiation on TRISO fuel

Shaimerdenov, A.*; Gizatulin, S.*; Dyussambayev, D.*; Askerbekov, S.*; Ueta, Shohei; Aihara, Jun; Shibata, Taiju; Sakaba, Nariaki

Nuclear Engineering and Technology, 54(8), p.2792 - 2800, 2022/08

 Times Cited Count:7 Percentile:88.9(Nuclear Science & Technology)

JAEA Reports

Study on radioactivity evaluation method of research reactors using DORT and MCNP codes

Kochiyama, Mami; Sakai, Akihiro

JAEA-Technology 2022-009, 56 Pages, 2022/06

JAEA-Technology-2022-009.pdf:4.15MB

It is necessary to evaluate radioactivity inventory in wastes before disposal of low-level radioactive wastes generated from dismantling research reactors. It is efficient for owners of each research reactor to use a common radioactive evaluation method in order to comply with the license application for disposal facility. In this report, neutron transport and activation calculations were carried out for the Rikkyo University research reactor in order to examine a common radioactivity evaluation method for burial disposal of radioactive wastes generated by dismantling. We adopted the neutron transport codes DORT and MCNP and the activation code ORIGEN-S with cross-section libraries based on JENDL-4.0 and JENDL/AD-2017. The radioactivity concentrations obtained by the radiochemical analysis and both calculation codes were in agreement by 0.4 to 3 times. Therefore, by appropriately considering this difference, the radioactivity evaluation method by DORT, MCNP and ORIGEN-S can be applied to the radioactivity evaluation for buried disposal. In order to classify wastes from dismantling by clearance or buried disposal method according to their radioactivity levels, we also created radioactivity concentration distributions in the concrete area and graphite thermal column area.

Journal Articles

Revealing the ion dynamics in Li$$_{10}$$GeP$$_{2}$$S$$_{12}$$ by quasi-elastic neutron scattering measurements

Hori, Satoshi*; Kanno, Ryoji*; Kwon, O.*; Kato, Yuki*; Yamada, Takeshi*; Matsuura, Masato*; Yonemura, Masao*; Kamiyama, Takashi*; Shibata, Kaoru; Kawakita, Yukinobu

Journal of Physical Chemistry C, 126(22), p.9518 - 9527, 2022/06

 Times Cited Count:6 Percentile:41.53(Chemistry, Physical)

Journal Articles

Phase-field mobility for crystal growth rates in undercooled silicates, SiO$$_2$$ and GeO$$_2$$ liquids

Kawaguchi, Munemichi; Uno, Masayoshi*

Journal of Crystal Growth, 585, p.126590_1 - 126590_7, 2022/05

Phase-field mobility, $$L$$, and crystal growth rates in crystallization of 11 oxides or mixed oxides in undercooled silicates, SiO$$_2$$ and GeO$$_2$$ liquids were calculated with a simple phase-field model (PFM), and material dependence of the $$L$$ was discussed. Ratios between experimental crystal growth rates and the PFM simulation with $$L=1$$ were confirmed to be proportional to a power of $$frac{TDelta T}{eta}$$ on the solid/liquid interface process during the crystal growth in a log-log plot. We determined that parameters, $$A$$ and $$B$$, of the $$L=A(frac{k_{B}TDelta T}{6pi^{2}lambda^{3}eta T_{m} })^{B}$$ were $$A=6.7times 10^{-6}$$ to $$2.6$$m$$^4$$J$$^{-1}$$s$$^{-1}$$ and $$B=0.65$$ to $$1.3$$, which were unique for the materials. It was confirmed that our PFM simulation with the determined $$L$$ reproduced quantitively the experimental crystal growth rates. The $$A$$ has a proportional relationship with the diffusion coefficient of a cation molar mass average per unit an oxygen molar mass at $$T_{m}$$ in a log-log graph. The $$B$$ depends on the sum of the cation molar mass per the oxygen molar mass, $$frac{Sigma_{i}M_{i}}{M_{O}}$$, in a compound. In $$frac{Sigma_{i}M_{i}}{M_{O}}leq 25$$, the $$B$$ decreases with the cation molar mass increasing. The assumed cause is that the B represents the degree of the temperature dependence of the $$L$$. Since the cation molar mass is proportional to an inertial resistance of the cation transfer, the $$B$$ decreases with inverse of the cation molar mass. In crystallization of the silicates of heavy cation in $$frac{Sigma_{i}M_{i}}{M_{O}}geq 25$$, the $$B$$ saturates at approximately 0.67, which leads to $$T_{p}approx 0.9T_{m}$$.

Journal Articles

Advanced reactor experiments for sodium fast reactor fuels (ARES) project; Transient irradiation experiments for metallic and MOX fuels

Jensen, C. B.*; Wachs, D. M.*; Woolstenhulme, N. E.*; Ozawa, Takayuki; Hirooka, Shun; Kato, Masato

Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 9 Pages, 2022/04

JAEA Reports

Development of stable solidification technique of ALPS sediment wastes by apatite ceramics (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2021-077, 217 Pages, 2022/03

JAEA-Review-2021-077.pdf:12.34MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of stable solidification technique of ALPS sediment wastes by apatite ceramics" conducted in FY2020. The present study aims to establish an apatite solidification process of radioactive sediment wastes, which were generated from the ALPS process manipulating the large amount of contaminated water from Fukushima Daiichi Nuclear Power Station. In FY2020, the synthetic scheme and elemental composition were updated to precipitation method to accept the actual ALPS sediment wastes in engineering scale. The synthesis of apatite or phosphate wastes and their molding conditions were surveyed, and the relations among elemental compositions, structures and chemical properties were clarified.

Journal Articles

Applicability of equivalent linear analysis to reinforced concrete shear walls; 3D FEM simulation of experiment results of seismic wall ultimate behavior

Ichihara, Yoshitaka*; Nakamura, Naohiro*; Moritani, Hiroshi*; Horiguchi, Tomohiro*; Choi, B.

Nihon Genshiryoku Gakkai Wabun Rombunshi, 21(1), p.1 - 14, 2022/03

In this study, we aim to approximately evaluate the effect of nonlinearity of reinforced concrete structures through seismic response analysis using the equivalent linear analysis method. A simulation analysis was performed for the ultimate response test of the shear wall of the reactor building used in an international competition by OECD/NEA in 1996. The equivalent stiffness and damping of the shear wall were obtained from the trilinear skeleton curves proposed by the Japan Electric Association and the hysteresis curves proposed by Cheng et al. The dominant frequency, maximum acceleration response, maximum displacement response, inertia force-displacement relationship, and acceleration response spectra of the top slab could be simulated well up to a shear strain of approximately $$gamma$$=2.0$$times$$10$$^{-3}$$. The equivalent linear analysis used herein underestimates the maximum displacement response at the time of ultimate fracture of approximately $$gamma$$=4.0$$times$$10$$^{-3}$$. Moreover, the maximum shear strain of the shear wall could not capture the locally occurring shear strain compared with that of the nonlinear analysis. Therefore, when employing this method to evaluate the maximum shear strain and test results, including those during the sudden increase in displacement immediately before the fracture, sufficient attention must be paid to its applicability.

JAEA Reports

Data comparison of measurement of carbon isotope standards between JAEA-AMS-TONO and JAEA-AMS-MUTSU

Kokubu, Yoko; Matsubara, Akihiro; Fujita, Natsuko; Kuwabara, Jun; Kinoshita, Naoki

JAEA-Technology 2021-028, 33 Pages, 2022/02

JAEA-Technology-2021-028.pdf:2.18MB

Japan Atomic Energy Agency (JAEA) has two facilities of accelerator mass spectrometry, JAEA-AMS-TONO and JAEA-AMS-MUTSU at Tono Geoscience Center and Aomori Research and Development Center, respectively. In this report, characteristics of each facility and results of standard samples in the inner-comparison test of carbon isotope measurement will be described. Both facilities have been used for research by not only JAEA's staff but also researchers who belong to universities and other institutes on the shared use program of JAEA facilities. Recently, researchers trend to use both facilities with the expansion of demand for the carbon isotope measurement by using the accelerator mass spectrometer (AMS). However, each facility has a spectrometer made by a different manufacturer and equipped with different mechanical components. There is a difference in each ability to the carbon isotope measurement such as background level. This is, for example, due to different ion injection system adapted at each spectrometer. Further, each facility uses a different analytical method adjusted to each main research field. When a researcher uses both facilities, the researcher understands more about the characteristics and need to make a suitable choice of a facility for samples and the analytical method. The report presents a detailed information of characteristics of the spectrometer, sample preparation method and analytical method, and of ability of the measurement based on the inner-comparison test.

Journal Articles

Decrease of radionuclide sorption in hydrated cement systems by organic ligands; Comparative evaluation using experimental data and thermodynamic calculations for ISA/EDTA-actinide-cement systems

Ochs, M.*; Dolder, F.*; Tachi, Yukio

Applied Geochemistry, 136, p.105161_1 - 105161_11, 2022/01

 Times Cited Count:4 Percentile:66.78(Geochemistry & Geophysics)

Various types of radioactive wastes and environments contain organic substances that can stabilize the aqueous complexes with radionuclides and therefore lead to a decrease of sorption. The present study focuses on testing a methodology to quantify sorption reduction factors (SRFs) in the presence of organic ligands for cement systems. Three approaches for the estimation of SRFs; (1) analogy with solubility enhancement factors, (2) radionuclide speciation based on the thermodynamic calculations, and (3) experimental sorption data in ternary systems, were coupled and tested for the representative organic ligands (ISA and EDTA) and selected key radionuclides (actinides). Our approach allows to critically evaluate the dependence of SRFs for various systems on the chosen method of quantification, in accordance with the data availability for a given systems. The reliable SRFs can only be derived from the sorption measurements in ternary systems. SRF often need to be derived in the absence of such direct evidence, and estimations need to be made based on analogies and speciation information. However, such estimates may be subject to substantial uncertainties.

921 (Records 1-20 displayed on this page)